DeepSeek发布技术论文报告 梁文锋参与署名
2025年02月18日 21:22
来源: 上海证券报·中国证券网
东方财富APP

方便,快捷

手机查看财经快讯

专业,丰富

一手掌握市场脉搏

手机上阅读文章

提示:

微信扫一扫

分享到您的

朋友圈

  2月18日,DeepSeek在海外社交平台发布了一篇纯技术论文报告,论文主要内容是关于NSA(Natively Sparse Attention,原生稀疏注意力)。据介绍,这是一种用于超快速长文本训练与推理的、硬件对齐且可原生训练的稀疏注意力机制。

  DeepSeek团队称,NSA通过针对现代硬件的优化设计,在提高推理速度的同时、降低预训练成本,而不会牺牲性能。它在通用基准测试、长文本任务和基于指令的推理中均能达到或超越全注意力模型的表现。稀疏注意力为提高效率同时保持模型能力提供了一个有前景的方向。

  同时,记者注意到,在这篇《原生稀疏注意力:硬件对齐且可原生训练的稀疏注意力机制》(Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention)的论文署名中,DeepSeek创始人梁文锋也在列。

  根据论文摘要,DeepSeek团队表示,业界越来越认识到长上下文建模对于下一代大型语言模型的重要性。然而,随着序列长度的增加,标准注意力机制的高复杂度成为了关键的延迟瓶颈。

  据悉,NSA通过高效的长序列处理能力,使模型能够直接处理整本书籍、代码仓库或多轮对话(如千轮客服场景),扩展了大语言模型在文档分析、代码生成、复杂推理等领域的应用边界。一位网友评论,“稀疏注意力机制确实能减少计算开销,DeepSeek的NSA架构虽然新颖,但在实际部署中,还得看具体应用场景和硬件优化。”

(文章来源:上海证券报·中国证券网)

文章来源:上海证券报·中国证券网 责任编辑:98
原标题:DeepSeek发布技术论文报告 梁文锋参与署名
郑重声明:东方财富发布此内容旨在传播更多信息,与本站立场无关,不构成投资建议。据此操作,风险自担。
举报
分享到微信朋友圈

打开微信,

点击底部的“发现”

使用“扫一扫”

即可将网页分享至朋友圈

扫描二维码关注

东方财富官网微信


扫一扫下载APP

扫一扫下载APP
信息网络传播视听节目许可证:0908328号 经营证券期货业务许可证编号:913101046312860336 违法和不良信息举报:021-61278686 举报邮箱:jubao@eastmoney.com
沪ICP证:沪B2-20070217 网站备案号:沪ICP备05006054号-11 沪公网安备 31010402000120号 版权所有:东方财富网 意见与建议:4000300059/952500